

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 683 (2003) 92-102

www.elsevier.com/locate/jorganchem

¹H-, ¹³C-NMR and ethylene polymerization studies of zirconocene/ MAO catalysts: effect of the ligand structure on the formation of active intermediates and polymerization kinetics

Konstantin P. Bryliakov^{a,b,*}, Nina V. Semikolenova^a, Dmitrii V. Yudaev^a, Vladimir A. Zakharov^a, Hans H. Brintzinger^c, Martin Ystenes^d, Erling Rytter^{d,e}, Evgenii P. Talsi^{a,b,*}

> ^a Boreskov Institute of Catalysis, Prospect Akad. Lavrentieva, 5, Novosibirsk 630090, Russia ^b Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia ^c Fachbereich Chemie, University of Konstanz, D-78457 Konstanz, Germany

^d Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway ^c Statoil Research Centre, N-7005 Trondheim, Norway

Received 31 March 2003; received in revised form 11 May 2003; accepted 12 May 2003

Abstract

Using ¹H- and ¹³C-NMR spectroscopies, cationic intermediates formed by activation of L₂ZrCl₂ with methylaluminoxane (MAO) in toluene were monitored at Al/Zr ratios from 50 to 1000 (L₂ are various cyclopentadienyl (Cp), indenyl (Ind) and fluorenyl (Flu) ligands). The following catalysts were studied: (Cp-R)₂ZrCl₂ (R = Me, 1,2-Me₂, 1,2,3-Me₃, 1,2,4-Me₃, Me₄, Me₅, *n*-Bu, *t*-Bu), rac-ethanediyl(Ind)₂ZrCl₂, rac-Me₂Si(Ind)₂ZrCl₂, rac-Me₂Si(1-Ind-2-Me)₂ZrCl₂, rac-ethanediyl(1-Ind-4,5,6,7-H₄)₂ZrCl₂, (Ind-2-Me)₂ZrCl₂, Me₂C(Cp)(Flu)ZrCl₂, Me₂C(Cp-3-Me)(Flu)ZrCl₂ and Me₂Si(Flu)₂ZrCl₂. Correlations between spectroscopic and ethene polymerization data for catalysts (Cp-R)₂ZrCl₂/MAO (R = H, Me, 1,2-Me₂, 1,2,3-Me₃, 1,2,4-Me₃, Me₄, Me₅, *n*-Bu, *t*-Bu) and rac-Me₂Si(Ind)₂ZrCl₂ were established. The catalysts (Cp-R)₂ZrCl₂/AlMe₃/CPh₃⁺B(C₆F₅)₄⁻ (R = Me, 1,2-Me₂, 1,2,3-Me₃, 1,2,4-Me₃, Me₄, *n*-Bu, *t*-Bu) were also studied for comparison of spectroscopic and polymerization data with MAO-based systems. Complexes of type (Cp-R)₂ZrCl₂/MAO (R = *n*-Bu, *t*-Bu) systems at low Al/Zr ratios (50–200). At Al/Zr ratios of 500–1000, the complex [L₂Zr(µ-Me)₂AlMe₂]⁺[Me-MAO]⁻ (III) dominates in all MAO-based reaction systems studied. Ethene polymerization activity strongly depends on the Al/Zr ratio (Al/Zr = 200–1000) for the systems (Cp-R)₂ZrCl₂/MAO (R = H, Me, *n*-Bu, *t*-Bu), while it is virtually constant in the same range of Al/Zr ratios for the catalytic systems (Cp-R)₂ZrCl₂/MAO (R = 1,2-Me₂, 1,2,3-Me₃, 1,2,4-Me₃, Me₄) and rac-Me₂Si(Ind)₂ZrCl₂/MAO. The data obtained are interpreted on assumption that complex III is the main precursor of the active centers of polymerization in MAO-based systems.

© 2003 Elsevier Science B.V. All rights reserved.

Keywords: Metallocene catalysts; ¹H- and ¹³C-NMR; Polyethylene; Structure-property relations; Transition metal chemistry

1. Introduction

Spectroscopic monitoring of the cationic intermediates formed upon activation of metallocenes with methylaluminoxane (MAO) and correlation of their concentration with polymerization activity is crucial for the elucidation of the reaction mechanisms [1–5]. Recent NMR studies [6,7] have provided important information on the structures of 'cation-like' intermediates formed upon activation of Cp₂ZrMe₂ with MAO in toluene. It was shown that complexes Cp₂MeZr-Me \rightarrow Al = MAO (I) and [Cp₂ZrMe(μ -Me)Cp₂ZrMe]⁺[Me-MAO]⁻ (II) dominate in reaction solution at low Al/ Zr ratios (20–50), whereas [Cp₂Zr(μ -Me)₂AlMe₂]⁺[Me-

^{*} Corresponding authors. Present address: Boreskov Institute of Catalysis, Prospect Akad. Lavrentieva, 5, Novosibirsk 630090, Russia. Tel.: +7-3832-341877; fax: +7-3832-343766.

E-mail addresses: bryliako@catalysis.nsk.su (K.P. Bryliakov), talsi@catalysis.nsk.su (E.P. Talsi).

K.P. Bryliakov et al. | Journal of Organometallic Chemistry 683 (2003) 92-102

MAO]⁻ (III) and Cp₂ZrMe⁺ \leftarrow Me⁻-Al \equiv MAO (IV) are the major species at high Al/Zr ratios (200–4000). It has been proposed [7] that complexes [Cp₂Zr(μ -Me)₂Al-Me₂]⁺[Me-MAO]⁻ (III) and Cp₂ZrMe⁺ \leftarrow Me⁻-Al \equiv MAO (IV) were the precursors of the active centers of polymerization. Recently, a scheme of the formation of active centers upon interaction of complex III with olefins has been proposed on the basis of quantum-chemical DFT calculations [8].

It is well-known that the substituents in the ligands of a zirconocene complex affect its polymerization activity [9–14]. However, there are no NMR data on the intermediates formed in the catalytic systems $L_2ZrCl_2/$ MAO, where L_2 are various substituted cyclopentadienyl, indenyl or fluorenyl ligands. Such data are available only for CPh₃⁺B(C₆F₅)₄⁻-based systems [15,16]. So, it is important to characterize the zirconium species formed by various zirconocenes activation with MAO and to elucidate the effect of substituents and Al/Zr ratio on the concentration of species III and IV, and polymerization activity.

In this work, we have undertaken a ¹H- and ¹³C-NMR spectroscopic study of the cationic intermediates formed upon activation of L2ZrCl2 with MAO at various Al/Zr ratios. The following catalysts were studied: $(Cp-R)_2ZrCl_2$ (R = Me, 1,2-Me₂, 1,2,3-Me₃, 1,2,4-Me₃, Me₄, Me₅, *n*-Bu, *t*-Bu), rac-ethanediyl (Ind)₂ZrCl₂, rac-Me₂Si(Ind)₂ZrCl₂, rac-Me₂Si(1-Ind-2rac-ethanediyl(1-Ind-4,5,6,7-H₄)₂ZrCl₂, Me)₂ZrCl₂, (Ind-2-Me)₂ZrCl₂, Me₂C(Cp)(Flu)ZrCl₂, Me₂C(Cp-3-Me)(Flu)ZrCl₂ and Me₂Si(Flu)₂ZrCl₂. Correlations between spectroscopic and ethene polymerization data for catalysts $(Cp-R)_2 ZrCl_2/MAO$ (R = H, Me, 1,2-Me₂, 1,2,3-Me₃, 1,2,4-Me₃, Me₄, Me₅, n-Bu, t-Bu) and rac-Me₂Si(Ind)₂ZrCl₂/MAO were observed. The catalysts $(Cp-R)_2 ZrCl_2 / AlMe_3 / CPh_3^+ B(C_6F_5)_4^-$ (R = Me, 1,2-Me₂, 1,2,3-Me₃, 1,2,4-Me₃, Me₄, *n*-Bu, *t*-Bu) were also studied for comparison of spectroscopic and polymerization data with MAO-based systems.

2. Experimental

2.1. Materials

Toluene and toluene- d_8 (CD₃C₆D₅) were dried over molecular sieves (4 Å), purified by refluxing over sodium metal and distillation in dry argon. The distilled solvents were degassed in vacuo and then stored and handled in vacuo. All experiments were carried out in sealed highvacuum systems using break seal techniques to avoid undesired contact with the atmosphere.

 L_2ZrCl_2 and $(Cp-n-Bu)_2ZrMe_2$ samples purchased from Boulder Scientific Co. were used without further purification as solutions in toluene- d_8 ([Zr] = 0.05– 0.00005 M). MAO samples were prepared from commercial MAO (Witco) by removal of the solvent and free AlMe₃ in vacuo at 20 °C. The solid product obtained (polymeric MAO with total Al content of 40 wt.% and Al as residual AlMe₃ ca. 5 wt.%) was used for the preparation of the samples.

AlMe₃ was purchased from Witco and used as solutions in toluene- d_8 (0.1–0.02 M).

2.2. Preparation of $L_2ZrCl_2|MAO$ and $L_2ZrCl_2|AlMe_3|$ $CPh_3^+ B(C_6F_5)_4^-$ samples for NMR investigation

Calculated quantities of L_2ZrCl_2 solution (in toluene for ¹³C and in toluene- d_8 for ¹H measurements) and MAO or AlMe₃/CPh₃⁺ B(C₆F₅)₄⁻ were combined under vacuum in NMR tubes (5 and 10 mm) and the tubes were sealed off from the vacuum line. The data on Al and Zr concentrations and Al/Zr ratios of the samples prepared are given.

2.3. NMR measurements

¹H spectra were recorded using pulsed FT-NMR technique on Bruker DPX-250 (at 250.13 MHz) and DPX-400 NMR (at 400.13 MHz) spectrometers in cylindrical 5 mm glass sample tubes. ¹³C spectra were recorded at 100.614 MHz, using pulsed FT-NMR technique, on a Bruker MSL-400 NMR spectrometer in cylindrical 10 mm glass sample tubes. Operating conditions: sweep width, 25 kHz (¹³C) and 5 kHz (¹H); spectrum accumulation frequency used, 0.2 Hz (¹H) and 0.2-0.02 Hz (¹³C); number of transients, 1000-10000 (^{13}C) and 100–10000 (^{1}H) ; 45° pulse at 10 µs (^{13}C) and $10-20^{\circ}$ pulse at $1-2 \mu s$ (¹H). The data were accumulated with 16-32K data points in the time domain. Chemical shifts were measured in ppm, with positive values in the low-field direction. For calculations of ¹H and ¹³C chemical shifts, the resonance of the CD₂H group of the toluene solvent was taken as 2.09 ppm (^{1}H) and that of the CD₃ group as 22.1 ppm (13 C).

2.4. ¹*H*-*NMR* spectra of L_2ZrCl_2 and $L_2ZrClMe$

For the assignment of the ¹H-NMR peaks of zirconium species formed in the (Cp-R)₂ZrCl₂/MAO systems, ¹H-NMR spectra of (Cp-R)₂ZrCl₂, (Cp-R)₂ZrClMe and [(Cp-R)₂Zr(μ -Me)₂AlMe₂]⁺[B(C₆F₅)₄]⁻ (R = Me, 1,2-Me₂, 1,2,3-Me₃, 1,2,4-Me₃, Me₄, *t*-Bu, *n*-Bu) were recorded. Complexes (Cp-R)₂ZrClMe were prepared in situ via reaction of (Cp-R)₂ZrCl₂ with AlMe₃ in toluene*d*₈ at 20 °C (Al/Zr = 50). ¹H-NMR spectra of the resulting solutions exhibit peaks of the initial zirconocene dichloride and those of the monomethylated product (Table 1). Cationic complexes [(Cp-R)₂Zr(μ -Me)₂AlMe₂]⁺[B(C₆F₅)₄]⁻ were prepared in situ via the reaction of (Cp-R)₂ZrCl₂ with AlMe₃/CPh₃⁺B(C₆F₅)₄⁻ Table 1

Species	Ср	Cp-Me	Zr-Me
(Cp-Me) ₂ ZrCl ₂ (Cp- <i>n</i> -Bu) ₂ ZrCl ₂ (Cp- <i>n</i> -Bu) ₂ ZrMe ₂ (Cp- <i>t</i> -Bu) ₂ ZrCl ₂	5.71 (tq, 4), $J_{\rm HH} = 2.6$ and 0.5 Hz; 5.61 (t, 4), $J_{\rm HH} = 2.6$ Hz 5.72 (t, 4), 5.85 (t, 4), $J_{\rm HH} = 2.6$ Hz 5.51 (t, 4), 5.72 (t, 4), $J_{\rm HH} = 2.6$ Hz 5.76 (t, 4), 6.05 (t, 4), $J_{\rm HH} = 2.7$ Hz	2.09 (s, 6)	-0.15 (s, 6)
$\begin{array}{l} (Cp-1,2-Me_2)_2 ZrCl_2 \\ (Cp-1,2,3-Me_3)_2 ZrCl_2 \\ (Cp-1,2,4-Me_3)_2 ZrCl_2 \\ (Cp-Me_4)_2 ZrCl_2 \\ (Cp-Me_5)_2 ZrCl_2 \end{array}$	5.57 (d, 4), $J_{\rm HH} = 2.9$ Hz; 5.45 (t, 2), $J_{\rm HH} = 2.9$ Hz 5.31 (s, 4) 5.58 (s, 4) 5.26 (s, 2)	1.94 (s, 12) 1.88 (s, 12), 1.90 (s, 6) 1.87 (s, 6), 1.83 (s, 12) 1.94 (s, 12), 1.70 (s, 12) 1.74 (s, 30)	
(Cp-Me) ₂ ZrClMe (Cp- <i>n</i> -Bu) ₂ ZrClMe (Cp- <i>t</i> -Bu) ₂ ZrClMe (Cp-1,2,3-Me ₃) ₂ ZrClMe (Cp-1,2,4-Me ₃) ₂ ZrClMe	5.65 (t, 4), 5.48 (m, 4), $J_{\rm HH} = 2.7$ Hz 5.55 (m, 4), 5.75 (m, 4) 5.50 (m, 4), 5.87 (m, 4) 5.22 (d, 2), 4.99 (d, 2), $J_{\rm HH} = 2.7$ Hz 5.36 (d, 2), 5.40 (d, 2), $J_{\rm HH} = 2.7$ Hz	1.96 (s, 6) 1.76 (s, 12), 1.88 (s, 6) 1.74 (s, 12), 1.80 (s, 6)	0.31 (s, 3) 0.38 (s, 3) 0.51 (s, 3) -0.04 (s, 3) 0.21 (s, 3)

¹H-NMR signals of complexes (Cp-R)₂ZrCl₂ and (Cp-R)₂ZrClMe (R = Me, 1,2-Me₂, 1,2,3-Me₃, 1,2,4-Me₃, Me₄, *n*-Bu, *t*-Bu)

in toluene- d_8 in a ratio of 1:50:1 at 20 °C. In this case, the stable complexes $[(Cp-R)_2Zr(\mu$ only $Me_{2}AlMe_{2}]^{+}[B(C_{6}F_{5})_{4}]^{-}$ $(R = Me, 1, 2-Me_2, 1, 2, 3-$ Me₃, 1,2,4-Me₃, Me₄, t-Bu, n-Bu) are observed in the reaction solution. Their NMR parameters are presented below in the corresponding sections. For the assignment of the ¹H-NMR peaks of $[L_2Zr(\mu-Me)_2AlMe_2]^+$ [Me-MAO]⁻, where L₂ are various indenyl and fluorenyl ligands, corresponding NMR spectra were compared with those for complexes $[L_2Zr(\mu-Me)_2AlMe_2]^+[B-Me_2]^+$ $(C_6F_5)_4$ and $[L_2Hf(\mu-Me)_2AlMe_2]^+[B(C_6F_5)_4]^-$ available in the literature [15].

2.5. Ethylene polymerization

2.5.1. $(Cp-R)_2 ZrCl_2/MAO$ systems

The 1-l reactor was evacuated at 70 °C, cooled to 20 °C and charged with 150 ml of toluene solution containing calculated quantities of $(Cp-R)_2ZrCl_2$ and MAO. The zirconocene concentration in the reactor was 1.5×10^{-5} M. After the polymerization temperature had stabilized (70 °C), ethylene was introduced into the reactor (2 or 5 atm). During the polymerization time (15 min), ethylene pressure and temperature were maintained constant. The experimental unit was equipped with automatic computer-controlled system for ethylene feed, recording the ethylene consumption and providing the kinetic curve output both in the form of a table and as a graph. Catalysts initial activities (see Tables 2–5) were calculated from the ethylene consumption for the first 5 min of polymerization.

2.5.2. $(Cp-R)_2 Zr Cl_2 |AlMe_3| CPh_3^+ B(C_6F_5)_4^-$ systems

Polymerization runs were performed in a 0.2-l reactor. The reactor was evacuated at 70 °C and cooled to 20 °C. Toluene solutions containing calculated quantities of $(Cp-R)_2ZrCl_2$ and AlMe₃ were mixed under vacuum

with a toluene solution of $\text{CPh}_3^+ \text{B}(\text{C}_6\text{F}_5)_4^-$ and immediately introduced into the reactor (total volume: 70 ml; zirconocene concentration in the reactor: 1.4×10^{-5} M; components molar ratio of Zr:AlMe₃:B = 1:100:1). Then, the polymerization temperature (50 °C) and ethylene pressure (3 atm) were adjusted and kept constant during the polymerization time (15 min). Catalysts' initial activities (see Table 8) were calculated from the ethylene consumption for the first 5 min of polymerization.

3. Results and discussion

3.1. Spectroscopic and polymerization studies of the catalytic systems $(Cp-R)_2 ZrCl_2 | MAO \ (R = Me, n-Bu, t-Bu)$

In order to elucidate the effect of the structure of alkyl substituent on the concentration of species III and IV, and polymerization activity, the catalytic systems (Cp-R)₂ZrCl₂/MAO (Me, *n*-Bu, *t*-Bu) were studied at various Al/Zr ratios. We begin the analysis of experimental data with the system (Cp-*n*-Bu)₂ZrCl₂/MAO, since for this system the most detailed spectroscopic data were obtained.

3.1.1. $(Cp-n-Bu)_2ZrCl_2/MAO$

The formation of complexes III, IV and other zirconium species present in the catalytic system studied at various Al/Zr ratios was monitored by recording the corresponding ¹H-NMR resonances of their Cp rings (Fig. 1). The assignment of ¹H-NMR resonances of III was made by comparison with those observed for [(Cp-n-Bu)₂Zr(μ -Me)₂AlMe₂]⁺[B(C₆F₅)₄]⁻ (Table 2). The ¹H-NMR chemical shifts of the hydrogen atoms of the Cp rings of the latter complex (two pseudotriplets at

95

Species Ср μ-Me Al-Me -0.27 (s, 6) -0.58 (s, 6) $[Cp_2Zr(\mu-Me)_2AlMe_2]^+[Me-MAO]^-$ 5.50 (s, 10) $[(Cp-Me)_2Zr(\mu-Me)_2AlMe_2]^+[Me-MAO]^-$ 5.38 ^a NF NF $[(Cp-n-Bu)_2Zr(\mu-Me)_2AlMe_2]^+[Me-MAO]^-$ 5.56 (t, 4), 5.62(t, 4), $J_{\rm HH} = 2.6$ Hz -0.23 (s, 6) -0.54 (s, 6) $[(Cp-t-Bu)_2Zr(\mu-Me)_2AlMe_2]^+[Me-MAO]^-$ 5.59 (t, 4), 6.00 (t, 4), $J_{\rm HH} = 2.6$ Hz NF NF $[Cp_2Zr(\mu-Me)_2AlMe_2]^+[B(C_6F_5)_4]^-$ 5.44 (s, 10) -0.40 (s, 6) -0.73 (s, 6) $[(Cp-Me)_2Zr(\mu-Me)_2AlMe_2]^+[B(C_6F_5)_4]^-$ 5.37 (t, 4), 5.46 (t, 4), $J_{\rm HH} = 2.6$ Hz -0.19 (s, 6) -0.70 (s, 6) $[(Cp-n-Bu)_2Zr(\mu-Me)_2AlMe_2]^+[B(C_6F_5)_4]^-$ 5.62 (t, 4), 5.68 (t, 4), $J_{\rm HH} = 2.6$ Hz -0.21 (s, 6) -0.61 (s, 6) $[(Cp-t-Bu)_2Zr(\mu-Me)_2AlMe_2]^+[B(C_6F_5)_4]^-$ -0.47 (s, 6) -0.18 (s, 6) 5.54 (t, 4), 6.04 (t, 4), $J_{\rm HH} = 2.6 \text{ Hz}$

¹H-NMR signals of $[(Cp-R)_2Zr(\mu-Me)_2AIMe_2]^+[B(C_6F_5)_4]^-$ and $[(Cp-R)_2Zr(\mu-Me)_2AIMe_2]^+[Me-MAO]^-$ (III) complexes (R = H, Me, n-Bu, t-Bu)

NF, not found.

Table 2

^a Broad singlet ($\Delta v_{1/2} = 6$ Hz).

 δ = 5.62 and 5.68, $J_{\rm HH}$ = 2.6 Hz) were close to those of III formed in the system (Cp-*n*-Bu)ZrCl₂/MAO (δ = 5.56 and 5.62, $J_{\rm HH}$ = 2.6 Hz) (Fig. 1a, Table 2).

The ¹H-NMR spectrum in the range of Cp hydrogen atoms of the system (Cp-n-Bu)₂ZrCl₂/MAO ([(Cp-n- $Bu_2ZrCl_2 = 0.01$ M, Al/Zr = 50 in toluene displays peaks of complex III, whereas several signals denoted by symbols IV_1 , IV_2 and IV_3 (Fig. 1a) are assigned to various types of complexes IV. The ¹H-NMR spectrum of the related dimethyl zirconocene system (Cp-n- Bu_2ZrMe_2/MAO ([(Cp-*n*-Bu)₂ZrMe₂] = 0.01 M, Al/ Zr = 60) exhibits two sharp pseudotriplets originating from III ($\delta = 5.66$, t and 5.68, t, $J_{\text{HH}} = 2.5$ Hz) and several broad signals originating from complexes IV_1 , IV_2 and IV_3 at 6.05, 5.93 and 5.85 ppm, respectively. The ¹³C-NMR spectrum of the sample in Fig. 1a exhibits sharp peaks at 116.47 and 115.87 ppm from complex III and several broad peaks from complexes IV_1 , IV_2 and IV_3 in the range 112–114 ppm. Since the same signals have been observed also in the ¹³C-NMR spectrum of the system (Cp-n-Bu)₂ZrMe₂/MAO at [(Cp- $(n-Bu)_2$ ZrMe₂] = 0.01 M, Al/Zr = 60, similar complexes **III** and **IV** are likely to be present in the systems (Cp-*n*-Bu)₂ZrMe₂/MAO and (Cp-n-Bu)₂ZrCl₂/MAO. For complex II observed for the (Cp-n-Bu)₂ZrMe₂/MAO system at Al/Zr = 10, sharp peaks of Cp carbons at 112.8 and 112.7 ppm were detected.

In contrast to the $(Cp-n-Bu)_2ZrCl_2/MAO$ system, only one broad resonance has been detected for the Cp rings of IV in the ¹H- and ¹³C-NMR spectra of the Cp₂ZrCl₂/MAO system [7]. Thus, substitution of the Cp ligands allows the resonances of complexes IV with differing counteranions of the type [Me-MAO]⁻ to be observed separately. Recently, experimental evidences in favor of formation of [Me-MAO]⁻ anions with different Lewis basicities in Cp₂ZrMe₂/MAO system were presented [17].

The sample with the same Al/Zr ratio as in Fig. 1a but with lower concentration of zirconocene ([(Cp-n-Bu)₂ZrCl₂] = 0.001 M) displays broad, poorly defined signals (Fig. 1b). In the sample of Fig. 1b, the peak of complex **III** is relatively small. This demonstrates that dilution of such a reaction system may disfavor formation of **III** due to a decrease in the concentration of Al₂Me₆. The intense broad peak at 5.76 ppm (Fig. 2b) was tentatively assigned to Cp hydrogen atoms of the monomethylated complex (Cp-n-Bu)₂ZrMeCl (see Table 1).

The observed picture is simplified when the Al/Zr ratio is increased. Complex III becomes the predomi-

Table 3 Ethylene polymerization over $(Cp-R)_2ZrCl_2/MAO$ catalysts (R = H, Me, *n*-Bu, *t*-Bu)

R	Al _(MAO) /Zr	C ₂ H ₄ pressure (atm)	Polyethylene (PE) yield ^a		Initial activity ^b (kg of PE per mol Zr min atm C ₂ H ₄)
			g	kg of PE per mol of Zr	-
Н	200	2	7.7	3850	255
Me	200	5	5.2	2600	60
<i>n</i> -Bu	200	2	0.7	350	35
t-Bu	200	5	0.1	50	-
Н	1000	2	17.1	8550	610
Me	1000	2	14.3	7150	320
<i>n</i> -Bu	1000	2	23.4	11700	460
t-Bu	1000	5	7.5	3750	92

^a PE yield per 15 min.

^b Initial activity calculated from the PE yield per 5 min.

Table 4

Species	Ср	Cp-Me	μ-Me	Al-Me
$\frac{1}{[(Cp-1,2-Me_2)_2Zr(\mu-Me)_2AlMe_2]^+[Me-MAO]^-} \\ [(Cp-1,2,3-Me_3)_2Zr(\mu-Me)_2AlMe_2]^+[Me-MAO]^- \\ [(Cp-1,2,4-Me_3)_2Zr(\mu-Me)_2AlMe_2]^+[Me-MAO]^- \\ [(Cp-Me_4)_2Zr(\mu-Me)_2AlMe_2]^+[Me-MAO]^- \\ \label{eq:constraint}$	5.57 (d, 4), 5.45 (t, 2), $J_{\rm HH} = 2.9$ Hz 5.36 (s, 4) 5.42 (s, 4) 5.54 (s, 2)	1.49 (s, 12) 1.40 (s, 12), 1.53 (s, 6) 1.42 (s, 12), 1.46 (s, 6) 1.38 (s, 12), 1.49 (s, 12)	NF -0.51 (s, 6) -0.50 (s, 6) -0.59 (s, 6)	$\begin{array}{r} -0.64 \ (\text{s}, \ 6) \\ -0.62 \ (\text{s}, \ 6) \\ -0.61 \ (\text{s}, \ 6) \\ -0.62 \ (\text{s}, \ 6) \end{array}$
$\begin{array}{l} [(Cp-1,2-Me_2)_2Zr(\mu-Me)_2AlMe_2]^+[B(C_6F_5)_4]^- \\ [(Cp-1,2,3-Me_3)_2Zr(\mu-Me)_2AlMe_2]^+[B(C_6F_5)_4]^- \\ [(Cp-1,2,4-Me_3)_2Zr(\mu-Me)_2AlMe_2]^+[B(C_6F_5)_4]^- \\ [(Cp-Me_4)_2Zr(\mu-Me)_2AlMe_2]^+[B(C_6F_5)_4]^- \end{array}$	5.40 (d, 4), 5.29 (t, 2), $J_{\rm HH}$ = 2.9 Hz 5.26 (s, 4) 5.37 (s, 4) 5.37 (s, 2)	1.48 (s, 12), 1.53 (s, 6) 1.38 (s, 12), 1.53 (s, 6) 1.39 (s, 12), 1.49 (s, 12)	-0.48 (s, 6) NF NF NF	$\begin{array}{c} -0.70 \; ({\rm s}, 6) \\ -0.70 \; ({\rm s}, 6) \\ -0.66 \; ({\rm s}, 6) \\ -0.44 \; ({\rm s}, 6) \end{array}$

¹H-NMR signals of $[(Cp-R)_2Zr(\mu-Me)_2AlMe_2]^+[Me-MAO]^-$ (III) and $[(Cp-R)_2Zr(\mu-Me)_2AlMe_2]^+[B(C_6F_5)_4]^-$ complexes (R = 1,2-Me_2, 1,2,3-Me_3, 1,2,4-Me_3, Me_4)

NF, not found.

nant species at the higher Al/Zr ratios (Figs. 1d and e). Two pseudotriplets are characteristics of the Cp hydrogen atoms of **III** (Fig. 1a). The distance between these pseudotriplets decreases with diminishing zirconocene concentration. No significant difference assignable to the presence of different [Me-MAO]⁻ anions at different Al/Zr ratios could be detected in the ¹H-NMR spectra of the outer-sphere ion pair **III**.

The Al/Zr ratios in samples of Figs. 1b–e were changed by the decrease in the amount of $(Cp-n-Bu)_2ZrCl_2$ at constant concentration of MAO. We have also made experiments at constant concentration of $(Cp-n-Bu)_2ZrCl_2$, while Al/Zr ratio was changed by varying the amount of MAO. In this case, complex III also dominated at high Al/Zr ratios. However, in contrast to the samples in Figs. 1b–e, pseudotriplets corresponding to III resolved nicely (Fig. 2). In the first case (Fig. 1), toluene- d_8 solution of solid MAO was

stored several days at room temperature before preparation of samples; in the second case (Fig. 2), appropriate amount of solid MAO was added into the solution of $(Cp-n-Bu)_2ZrCl_2$ in d_8 -toluene just before recording the NMR spectra. Thus, in order to obtain well-resolved NMR spectra of **III**, prolonged storing of toluene solutions of solid MAO should be avoided.

The polymerization data show that the catalytic system $(Cp-n-Bu)_2ZrCl_2/MAO$ is virtually inactive at Al/Zr ratios lower than 200. Polymerization activity at an Al/Zr ratio of 1000 is higher by a factor of 13 than that at Al/Zr = 200 (Table 3). According to the NMR experiments, the concentration of species III increases at the expense of species IV with the increase of Al/Zr ratio. Despite the concentration of zirconocene under conditions of polymerization experiment is by 1–2 order of magnitude lower, it is natural to expect that the portion of III in polymerization experiment will also

Table 5 Ethylene polymerization over (Cp-R)₂ZrCl₂/MAO catalysts

R	Al _(MAO) /Zr	C ₂ H ₄ pressure (atm)	PE yield ^a		Initial activity $^{\rm b}$ (kg of PE per mol Zr min atm ${\rm C_2H_4}$)		
			g	kg of PE per mol of Zr	-		
Н	200	2	7.7	3850	255		
Me	200	5	5.2	2600	60		
1,2-Me ₂	200	2	13.0	6500	470		
1,2,3-Me ₃	200	5	10.0	5000	102		
1,2,4-Me ₃	200	5	13.9	6950	134		
Me ₄	200	5	17.1	8550	190		
Me ₅	200	5	11.5	5750	145		
Me ₂ Si(Ind) ₂	200	2	15.6	7800	420		
Н	1000	2	17.1	8550	610		
Me	1000	2	14.3	7150	320		
1,2-Me ₂	1000	2	19.0	9500	520		
1,2,3-Me ₃	1000	5	8.6	4300	115		
1,2,4-Me ₃	1000	2	8.7	4350	232		
Me ₄	1000	2	11.6	5800	300		
Me ₅	1000	2	14.1	7050	445		
Me ₂ Si(Ind) ₂	1000	2	16.0	8000	450		

^a PE yield per 15 min.

^b Initial activity calculated from the PE yield per 5 min.

Fig. 1. ¹H-NMR spectra (in the range of Cp hydrogen atoms, at 20 °C) of the system (Cp-*n*-Bu)₂ZrCl₂/MAO at Al/Zr ratios of 50 (a), 50 (b), 200 (c), 600 (d) and 1000 (e). Sample (a): [MAO] = 1.5 M, [(Cp-*n*-Bu)₂ZrCl₂] = 3×10^{-2} M; samples (b)–(e): [MAO] = 0.5 M; [(Cp-*n*-Bu)₂ZrCl₂] = 10^{-2} M (b), 2.5×10^{-3} M (c), 8×10^{-4} M (d) and 5×10^{-4} M (e).

increase with the growth of Al/Zr ratio. Thus, we assign the increase in catalytic activity of (Cp-*n*-Bu)₂ZrCl₂/ MAO system with the increment of Al/Zr ratio mainly to the increase of concentrations of species of type **III**.

3.1.2. $(Cp-t-Bu)_2 Zr Cl_2/MAO$

Like for the case of R = n-Bu, the zirconocene species present in these reaction systems at various Al/Zr ratios were monitored mainly by ¹H-NMR spectroscopy (Fig. 3, Table 2). At Al/Zr = 50, the initial complex (Cp-*t*-Bu)₂ZrCl₂ and the monomethylated complex (Cp-*t*-Bu)₂ZrClMe are the major species, while the concentrations of complexes **III** and **IV** are low (Fig. 3a). The ratio of the zirconium complexes of the sample in Fig. 3a did not vary substantially within a day at room temperature.

At Al/Zr = 200, the ¹H-NMR spectrum of the system (Cp-*t*-Bu)₂ZrCl₂/MAO displays the intense peaks of complex **III** (R = *t*-Bu) with partially resolved spin-spin splitting $J_{\rm HH} = 2.6$ Hz. The remaining signals marked as **IV**₁, **IV**₂ and **IV**₃ were assigned to complexes of type **IV**. The H,H-COSY spectra displayed no

Fig. 2. ¹H-NMR spectra (in the range of Cp hydrogen atoms) of the system $(Cp-n-Bu)_2ZrCl_2/MAO$ at Al/Zr ratios of 50 (a), 200 (b) and 600 (c). [(Cp-n-Bu)_2ZrCl_2] = 10^{-3} M (b); [MAO] = 0.05 M (a), 0.2 M (b) and 0.6 M (c).

Fig. 3. ¹H-NMR spectra (in the range of Cp hydrogen atoms, at 20 °C) of the system (Cp-*t*-Bu)₂ZrCl₂/MAO at Al/Zr ratios of 50 (a), 200 (b), 600 (c) and 1000 (d). [MAO] = 0.5 M; [(Cp-*t*-Bu)₂ZrCl₂] = 10^{-2} M (a), 2.5×10^{-3} M (b), 8×10^{-4} M (c) and 5×10^{-4} M (d).

correlation between the signals of IV_1 and IV_2 . These signals are thus likely to originate from distinct complexes.

Further increase of the Al/Zr ratio up to 600–1000 causes a drop in concentrations of complexes IV such that complex III is now predominantly present (Figs. 3c and d). This result differs from that for Cp₂ZrMe₂/MAO system where complexes III and IV were present in comparable concentrations even at Al/Zr ratio of 1000 [7]. Probably, the bulky *t*-Bu substituents disfavor the anion–cation contacts in complex IV, and thus formation of species III with outer-sphere counterion becomes preferable. Practically, all starting complex (Cp-*t*-Bu)₂ZrCl₂ converts into species III upon interaction with MAO at Al/Zr ratio higher than 500.

As for R = n-Bu, the presence of different counteranions in III (R = t-Bu) does not give rise to any significant differences in the ¹H-NMR spectra of III (Figs. 3b–d). Apparently, ¹H-NMR spectra of III are not as sensitive to variations in the nature of their [Me-MAO]⁻ counteranions as the ¹H-NMR spectra of the ion pair IV, since in III the perturbing [Me-MAO]⁻ anion is only in outer-sphere contact to the coordinatively saturated zirconocene cation. Besides, [Me-MAO]⁻ anions can rapidly exchange between various species III, and thus the cationic part of III displays one sharp NMR pattern.

As for R = n-Bu, the polymerization activity of the $(Cp-t-Bu)_2ZrCl_2/MAO$ system at Al/Zr ratio of 1000 is much higher than that at Al/Zr = 200 (Table 3). The data in Table 3 would thus indicate that outer-sphere ion pairs of the type **III** (or their polymeryl homologs) are the immediate precursors for the crucial alkyl zirconocene olefin cations required for polymer growth.

3.1.3. $(Cp-Me)_2ZrCl_2/MAO$

Fig. 4 shows ¹H-NMR spectra (range of Cp hydrogen atoms) of the catalytic system (Cp-Me)₂ZrCl₂/MAO. It is seen that at Al/Zr = 50 only very broad peaks are

Fig. 4. ¹H-NMR spectra (in the range of Cp hydrogen atoms, at 20 °C) of the system (Cp-Me)₂ZrCl₂/MAO: before addition of MAO (a); at Al/Zr ratios of 50 (b) and 600 (c). [(Cp-*t*-Bu)₂ZrCl₂] = 10^{-3} M; [MAO] = 5×10^{-2} M (b) and 0.6 M (c).

observed. None of them can be attributed to complex **III** (Fig. 4b). With the increase of Al/Zr ratio, the relative intensity of the resonance of complex **III** grows (Fig. 4c). Two pseudotriplets, which can be expected for Cp protons of complex **III**, are not resolved and only one broadened peak is observed, whereas the related ion pair $[(Cp-Me)_2Zr(\mu-Me)_2AlMe_2]^+[B(C_6F_5)_4]^-$ displays two pseudotriplets (Table 2). The origin of the exchange process leading to this effect is still unclear. For all other zirconocenes studied in this work, well-resolved ¹H-NMR spectra of **III** could be obtained.

The polymerization activity of the (Cp-Me)₂ZrCl₂/ MAO system at an Al/Zr ratio of 1000 is higher by a factor of 5 than that at an Al/Zr ratio of 200. This increase of activity is noticeably lower than that for R = n-Bu and *t*-Bu but is rather close to the corresponding increase for R = H (Table 3).

To summarize the results of this chapter, one can conclude that, for $(Cp-R)_2 ZrCl_2/MAO$ systems (R = Me, *n*-Bu, *t*-Bu), the relative concentration of **III** grows with increasing Al/Zr ratios. In the case of R = t-Bu, only complex III is observed in the reaction solution at an Al/Zr ratio of more than 500. Probably, the bulky t-Bu substituents disfavor the anion-cation contacts in complex IV and thus formation of species III with outersphere counterion becomes preferable. Complexes IV (R = Me, n-Bu, t-Bu) with different [Me-MAO]⁻ counteranions can display distinct ¹H- and ¹³C-NMR peaks. whereas NMR spectra of III are not as sensitive to variations in the nature of their [Me-MAO]⁻ counteranions. Polymerization activity for $\mathbf{R} = t$ -Bu is noticeably lower than for R = n-Bu and Me, probably due to a negative effect of the bulkiness of R.

3.2. Spectroscopic and polymerization study of the catalytic systems $(Cp-R)_2 Zr Cl_2 / MAO \ (R = Me, 1, 2-Me_2, 1, 2, 3-Me_3, 1, 2, 4-Me_3, Me_4)$

In order to elucidate the effect of the number of methyl substituents on the relative concentration of species III and IV, and on the polymerization activity, spectroscopic and polymerization data for catalytic systems (Cp-R)₂ZrCl₂/MAO (R = Me, 1,2-Me₂, 1,2,3-Me₃, 1,2,4-Me₃, Me₄) were compared at various Al/Zr ratios. More detailed experimental data were obtained for the (Cp-1,2,3-Me₃)₂ZrCl₂/MAO system.

The ¹H-NMR spectrum of the system (Cp-1,2,3-Me₃)₂ZrCl₂/MAO at Al/Zr = 50 (in the range of Cp hydrogen atoms) exhibits the signal of complex III (R = 1,2,3-Me₃) and several weaker signals (Fig. 5a, Table 4). None of these can be assigned to the monomethylated complex (Cp-1,2,3-Me₃)₂ZrClMe (Table 1). A H,H-COSY spectrum shows that the two sharp doublets at 5.60 and 5.01 ppm in Fig. 3a belong to one and the same still unidentified complex. The remaining broad signals can be assigned to complexes IV (R = 1,2,3-Me₃).

Fig. 5. ¹H-NMR spectra (in the range of Cp hydrogen atoms, at 20 °C) of the system (Cp-1,2,3-Me₃)₂ZrCl₂/MAO in toluene-*d*₈ at various Al/Zr ratios: 50 (a), 200 (b), 600 (c) and 1000 (d). [MAO] = 0.5 M; [(Cp-1,2,3-Me₃)₂ZrCl₂] = 10^{-2} M (a), 2.5×10^{-3} M (b), 8×10^{-4} M (c) and 5×10^{-4} M (d).

In contrast to the systems (Cp-R)₂ZrCl₂/MAO (R = Me, *n*-Bu, *t*-Bu), complex III dominates in the system (Cp-1,2,3-Me₃)₂ZrCl₂/MAO even at an Al/Zr ratio of 50. At higher Al/Zr ratios (Figs. 5c and d), complex III is the only one observable in the reaction solution, as was the case also for R = *t*-Bu. Again in distinction to the systems (Cp-R)₂ZrCl₂/MAO (R = Me, *n*-Bu, *t*-Bu), the polymerization activity of the system (Cp-1,2,3-Me₃)₂ZrCl₂/MAO was constant in the range of Al/Zr ratios 200–1000 (Table 5).

Complex III (R = 1,2,3-Me₃) appears to be stabilized relative to the contact ion pair IV by the more highly substituted Cp ligands. To elucidate the effect of Me substituents on the relative concentrations of complexes III and IV, ¹H-NMR spectra of the catalytic systems $(Cp-R)_2 ZrCl_2/MAO$ (R = Me, 1,2-Me₂, 1,2,3-Me₃, 1,2,4-Me₃, Me₄) were compared at the same zirconocene concentrations and Al/Zr ratios. As an example, Fig. 6 shows ¹H-NMR spectra (the range of Cp hydrogen atoms) of $(Cp-R)_2ZrCl_2/MAO$ systems (R = Me, 1,2-Me₂, 1,2,4-Me₃, Me₄; $[(Cp-R)_2ZrCl_2] = 0.001$ M; Al/ Zr = 200). It is seen that in the case of R = Me and 1,2-Me₂, broad signals of complexes IV are present in the reaction solution at Al/Zr of 200, whereas in the case of R = 1,2,4-Me₃ and Me₄, only the sharp peaks of complexes III are observed. Thus, three or four Me substituents in a Cp ring stabilize III relative to IV in (Cp-R)₂ZrCl₂/MAO systems.

Fig. 6. ¹H-NMR spectra of (Cp-R)₂ZrCl₂/MAO systems in toluene (at 20 °C, Al/Zr = 200, [(Cp-R)₂ZrCl₂] = 10^{-3} M): R = Me (a), R = 1,2-Me₂ (b), R = 1,2,4-Me₃ (c) and R = Me₄ (d).

According to ¹H-NMR spectroscopic data, only complex **III** is present in the catalytic systems (Cp-R)₂ZrCl₂/MAO (R = 1,2,3-Me₃, 1,2,4-Me₃, Me₄) at Al/ Zr = 200. Thus, one should expect that their catalytic activity should be close at Al/Zr of 200 and 1000, since the starting complex entirely converts into active species **III** even at Al/Zr of 200. Indeed, the polymerization data for (Cp-R_n)₂ZrCl₂/MAO (R = 1,2,3-Me₃, 1,2,4-Me₃, Me₄) systems at Al/Zr = 200 and 1000 (Table 5) show that with the growth of Al/Zr ratios from 200 to 1000 the activities of these systems are almost constant.

For the catalytic systems $(Cp-R)_2 Zr Cl_2 / MAO (R = H)$, Me, 1,2-Me₂, *n*-Bu, *t*-Bu), besides the sharp peaks of III, broad signals of complexes IV are observed in the ¹H-NMR spectra of the reaction solutions at Al/Zr of 200. Thus, one can expect that the activity of these systems would go up with the increase of Al/Zr ratio due to a decrease of the concentration of complexes IV and a corresponding increase of that of the more active complex III. This prediction is valid for R = H, Me, *n*-Bu, t-Bu (Table 3). However, the activity of the (Cp-1,2-Me₂)₂ZrCl₂/MAO system is almost the same at Al/Zr of 200 and 1000 (Table 5). Probably, in this particular case the activities of species III and IV are comparable. Further studies are needed to verify this assumption. Despite this exception, complex **III** seems to be the main precursor of the active centers of polymerization for the catalytic systems studied. The data obtained for the

Enzytic polymenzation over $(Cp-K)_{2Z}/Ch_{2}/Anive_3/[113C][D(C_{61}^{-5}/3)]$ eatalysis $(Z1,A1,D-1,100,1)$							
Zirconocene	PE yie	eld	Initial activity (kg PE per mol Zr min atm)	mol Zr min atm)			
	g	kg PE per mol Zr					
Cp ₂ ZrCl ₂	0.70	700	28.0				
(Cp-Me) ₂ ZrCl ₂	0.61	610	30.7				
(Cp-1,2-Me ₂) ₂ ZrCl ₂	0.60	600	30.0				
(Cp-1,2,3-Me ₃) ₂ ZrCl ₂	0.75	750	30.0				
(Cp-1,2,4-Me ₃) ₂ ZrCl ₂	0.93	930	42.0				
(Cp-Me ₄) ₂ ZrCl ₂	0.84	840	37.3				
(Cp-Me ₅) ₂ ZrCl ₂	1.95	1950	100.0				
$(Cp-t-Bu)_2ZrCl_2$	0.93	930	42.0				
$(Cp-n-Bu)_2ZrCl_2$	1.65	1650	70.0				
Me ₂ Si(Ind) ₂ ZrCl ₂	3.72	3720	200.7				

Table 6 Ethylene polymerization over $(Cp-R)_2ZrCl_2/AIMe_3/[Ph_2Cl[B(C_6F_5)_3]]$ catalysts (Zr:AI:B = 1:100:1)

Polymerization conditions: T = 50 °C, C₂H₄ pressure = 3 atm, in toluene for 15 min, $[Zr] = 1.4 \times 10^{-5}$ M.

systems (Cp-R)₂ZrCl₂/MAO correlate with those for the highly active catalytic systems (Cp-R)₂ZrCl₂/AlMe₃/ CPh₃⁺B(C₆F₅)₄⁻ (Table 6). In the latter, ¹H-NMR spectroscopy indicates the presence of only the intermediates [(Cp-R)₂ZrMe(μ -Me)₂AlMe₂]⁺[B(C₆F₅)₄]⁻ containing the same cations as those in the intermediates III in the MAO-based systems, thus confirming the role of complex III as the precursor of the crucial catalyst species.

In conclusion, three or four Me substituents in a Cp ring stabilize III relative to IV in $(Cp-R)_2ZrCl_2/MAO$ systems (III dominates in reaction solution even at Al/Zr of 50–100). As a result, the polymerization activity of $(Cp-R_n)_2ZrCl_2/MAO$ systems ($R = 1,2,3-Me_3, 1,2,4-Me_3, Me_4$) is virtually constant in the range of Al/Zr ratios 200–1000.

3.3. Spectroscopic study of $L_2ZrCl_2|MAO$ systems (L_2 are various indenyl and fluorenyl ligands)

In order to exceed spectroscopic monitoring of active species of polymerization to more complex and practically attractive zirconocene catalysts, catalytic systems L_2ZrCl_2/MAO (L_2 are various indenyl and fluorenyl ligands) were studied.

The analysis of ¹H-NMR spectra of the L₂ZrCl₂/ MAO systems shows that for all catalysts studied $(L_2ZrCl_2 = rac-ethanediyl(Ind)_2ZrCl_2,$ rac-Me₂-Si(Ind)₂ZrCl₂, rac-Me₂Si(1-Ind-2-Me)₂ZrCl₂, rac-etha $nediyl(1-Ind-4,5,6,7-H_4)_2ZrCl_2$, $(Ind-2-Me)_2ZrCl_2$, Me₂C(Cp)(Flu)ZrCl₂, Me₂C(Cp-3-Me)(Flu)ZrCl₂, Me₂-Si(Flu)₂ZrCl₂), broad resonances of IV were not detected at all or were observed only at low Al/Zr ratios (50-100), whereas only the 'cation-like' complex $[L_2Zr(\mu-Me)_2AlMe_2]^+[Me-MAO]^-$ (III) was observed in the reaction solution at Al/Zr ratios of 200-500. Probably, the substituents and bulkiness of the ligands disfavor the anion-cation contacts in complex IV due to steric or electronic effects. Complexes III exhibit sharp

¹H-NMR resonances ($\Delta \vartheta_{1/2} = 0.5$ Hz) that simplify their detection even in the presence of large excess of MAO. As an example, the ¹H-NMR spectrum of complex III observed in the system rac-ethanediyl(Ind)₂ZrCl₂/MAO at an Al/Zr ratio of 300 is presented in Fig. 7. A spinspin coupling constant of 0.7 Hz is resolved for one of the Ind-C₅ protons of III. Complexes III are stable for weeks at 20 °C in the samples studied. The ¹H-NMR parameters of 'cation-like' species III for the systems investigated are collected in Tables 7 and 8 in comparison with the data available for the corresponding complexes $[L_2Zr(\mu-Me)_2AlMe_2]^+[B(C_6F_5)_4]^$ and $[L_2Hf(\mu-Me)_2AlMe_2]^+[B(C_6F_5)_4]^-,$ detected in $CPh_3^+B(C_6F_5)_4^-$ -based systems [15]. It is seen that, despite the nonuniformity of their [Me-MAO]- counterions, the cationic parts of complexes III can be characterized by ¹H-NMR spectroscopy equally well as for related complexes in reaction systems based on $CPh_3^+ B(C_6F_5)_4^-$.

Ethylene polymerization data were obtained only for the system rac-Me₂Si(Ind)₂ZrCl₂/MAO (Table 5). As can be expected, the polymerization activity of this system was constant at Al/Zr ratios of 200-1000, since

Fig. 7. ¹H-NMR spectrum of [ethanediyl(Ind)₂Zr(μ -Me)₂Al-Me₂]⁺[Me-MAO]⁻ in toluene at 20 °C ([Zr] = 3×10^{-3} M, Al/Zr = 300).

Table 7

Species	Ind-C ₅	$-C_{2}H_{4}-$	-SiMe ₂ -	μ-Me	Al-Me
[rac-ethanediyl(Ind) ₂ Zr(μ-	6.44 (dd, 2), J = 3.3 and 0.7 Hz; 6.20	4.04 (s, 4)		-0.58 (s, 6)	-0.63 (s, 6)
$Me_{2}AlMe_{2}^{+}[B(C_{6}F_{5})_{4}]^{-a}$	(d, 2), J = 3.3 Hz				
[rac-Me ₂ Si(Ind) ₂ Zr(µ-	6.92 (d, 2), $J = 3.3$ Hz; 5.91 (d, 2),		1.29 (s, 6)	-0.61 (s, 6)	-0.81 (s, 6)
$Me_{2}AlMe_{2}^{+}B(C_{6}F_{5})_{4}^{-a}$	J = 3.3 Hz				
[rac-ethanediyl(Ind) ₂ Zr(µ-Me) ₂ Al-	5.61 (dd, 2), <i>J</i> = 3.3 and 0.7 Hz; 5.26	3.22 (s, 4)		-0.75 (s, 6)	-1.22 (s, 6)
Me_2] ⁺ [Me-MAO] ^{- b}	(d, 2), J = 3.3 Hz				
$[rac-Me_2Si(Ind)_2Zr(\mu-Me)_2AlMe_2]^+[Me-$	6.16 (d, 2), J = 3.3 Hz; 5.03 (d, 2),		0.85 (s, 6)	-0.65 (s, 6)	-1.35 (s, 6)
MAO] ^{- b}	J = 3.3 Hz				
[rac-Me ₂ Si(1-Ind-2-Me) ₂ Zr(µ-Me) ₂ Al-	5.86 (s, 2)		0.9 (s, 6)	-0.65 (s, 6)	-1.39 (s, 6)
Me_2] ⁺ [Me-MAO] ^{- b,c}					
$[(2-Me-Ind)_2Zr(\mu-Me)_2AlMe_2]^+[Me-$	5.80 (s, 4)			-0.53 (s, 6)	-1.1 (s, 6)
MAO] ^{- b,d}					
[rac-ethanediyl(1-Ind-4,5,6,7-H ₄) ₂ Zr(µ-	5.48 (d, 2), J = 2.9 Hz; 4.76 (d, 2),	2.84 (m, 2), 2.57		-0.26 (s, 6)	-0.62 (s, 6)
Me) ₂ AlMe ₂] ⁺ [Me-MAO] ⁻	J = 2.9 Hz	(m, 2)			
Me) ₂ AIMe ₂] [[] [Me-MAO]	J = 2.9 Hz	(m, 2)			

¹ H-NMR signals of complexes [rac-R ₁ (Ind-R) ₂ Zr(µ-Me) ₂ AlMe ₂] ⁺ [Me-	MAO ⁻ and $[rac-R_1(Ind)_2Zr(\mu-Me)_2AlMe_2]^+[B(C_6F_5)_4]^-$ (R = H, 2-M
$R_1 = none, -C_2H_4-, -SiMe_2-)$	

^a In CD₂Cl₂ at 20 °C [15].

^b In toluene- d_8 at 20 °C.

^c 2-Me peak at 1.53 (s, 6).

¹ 2-Me peak at 1.82 (s, 6).

the starting complex is entirely converted to the active species III even at an Al/Zr ratio of 100.

We also tried to monitor the concentration of III directly in the course of 1-hexene polymerization by rac-Me₂Si(Ind)₂ZrCl₂/MAO. In particular, 1-hexene was added at -25 °C to an NMR tube containing only species III as a catalyst ([rac-Me₂Si(Ind)₂ZrCl₂] = 0.001 M, Al/Zr = 100, [1-hexene] = 0.01 M). Upon warming the sample to 10 °C, ¹H-NMR spectra indicate that 1-hexene is converted to the corresponding polymer with a characteristic time of 5 min. However, the ¹H-NMR peaks of III remained unchanged. Thus, the conditions of this experiment are not suitable for detection of polymeryl homologs of III. Probably, AlMe₃ present in excess rapidly displaces polymeryl ligands to restore III.

Nevertheless, this experiment shows that a catalytic system, which contains only species **III** as a catalyst, is able to polymerize 1-hexene.

In conclusion, the analysis of ¹H-NMR spectra of the L₂ZrCl₂/MAO systems, where L₂ are various indenyl and fluorenyl ligands, shows that for all catalysts studied, broad resonances of **IV** were not detected at all or were observed only at low Al/Zr ratios (50–100), whereas only the 'cation-like' complex [L₂Zr(μ -Me)₂Al-Me₂]⁺[Me-MAO]⁻ (**III**) was observed in the reaction solution at Al/Zr ratios of 200–500. Despite the non-uniformity of their [Me-MAO]⁻ counterions, the cationic parts of complexes **III** can be characterized by ¹H-NMR spectroscopy equally well as for related complexes in reaction systems based on CPh₃⁺ B(C₆F₅)₄⁻.

Table 8

¹H-NMR signals of complexes $[Me_2C(Cp)(Flu)Hf(\mu-Me)_2AlMe_2]^+[B(C_6F_5)_4]^-$, $[Me_2C(Cp-R)(Flu)Zr(\mu-Me)_2AlMe_2]^+[Me-MAO]^-$ and $[Me_2-Si(Flu)_2Zr(\mu-Me)_2AlMe_2]^+[Me-MAO]^-$ (R = H, 3-Me)

Species	Flu	C ₅	-CMe ₂ -	µ-Me	Al-Me
$\label{eq:constraint} \begin{array}{l} \hline [Me_2C(Cp)(Flu)Hf(\mu\text{-}\\ Me)_2AlMe_2]^+[B(C_6F_5)_4]^{-a} \end{array}$	8.22 (d, 2), $J = 8.58$ Hz; 7.96 (d, 2), $J = 8.91$ Hz; 7.75 (t, 2), $J = 8.58$ Hz; 7.34 (t, 2), J = 8.91 Hz	6.32 (t, 2), <i>J</i> = 2.6 Hz; 5.58 (t, 2), <i>J</i> = 2.6 Hz	2.49 (s, 6)	-0.57 (s, 6)	-0.72 (s, 3), -0.63 (s, 3)
$\begin{array}{l} [Me_2C(Cp)(Flu)Zr(\mu\text{-}Me)_2Al\text{-}\\ Me_2]^+[Me\text{-}MAO]^- \end{array}$	7.52 (d, 2), $J = 8.5$ Hz; 7.28 (t, 2), $J = 8.5$ Hz; 7.01 (t, 2), J = 8.5 Hz ^b	5.60 (t, 2), <i>J</i> = 2.6 Hz; 4.68 (t, 2), <i>J</i> = 2.6 Hz	1.89 (s, 6)	-0.76 (s, 6)	-1.51 (s, 6)
[Me ₂ C(3-Me-Cp)(Flu)Zr(µ- Me) ₂ AlMe ₂] ⁺ [Me-MAO] ^{- c}	7.57 (t, 2), $J = 8.5$ Hz ^b	5.55 (t, 2), $J = 2.6$ Hz; 5.31 (t, 1), $J = 2.6$ Hz	1.86 (s, 6)	-0.71 (s, 6)	-1.73 (s, 3), -1.57 (s, 3)
$[Me_{2}Si(Flu)_{2}Zr(\mu-Me)_{2}Al-Me_{2}]^{+}[Me-MAO]^{-d}$	6.65 (t, 4), $J = 8$ Hz ^b			-0.72 (s, 6)	-2.46 (s, 6)

^a [15].

^b Masked by the signal of toluene.

^c Peak of 3-Me at 1.92 (s, 6).

^d Peak of Me₂Si at 1.37 (s, 6).

Acknowledgements

This work was supported by INTAS grant 00-0841. Funding from NTNU, under the Strategic Area: Materials Program, is acknowledged. The authors thank Dr. D.E. Babushkin for valuable discussions.

References

- [1] E. Chen, T.J. Marks, Chem. Rev. 100 (2000) 1391.
- [2] W. Kaminsky (Ed.), Metalorganic Catalysts for Synthesis and Polymerization: Recent Results by Ziegler-Natta and Metallocene Investigations, Springer-Verlag, Berlin, 1999.
- [3] R.F. Jordan (Ed.), J. Mol. Catal. A: Chem. 128 (1998) N1-3 (special issue on metallocene and single site olefin catalysts).
- [4] M. Bochmann, J. Chem. Soc. Dalton Trans. (1996) 255.
- [5] H.-H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R.M. Waymouth, Angew. Chem. Int. Ed. Engl. 34 (1995) 1143.
- [6] I. Tritto, R. Donetti, C. Sacchi, P. Locatelli, G. Zannoni, Macromolecules 30 (1997) 1247.

- [7] D.E. Babushkin, N.V. Semikolenova, V.A. Zakharov, E.P. Talsi, Macromol. Chem. Phys. 201 (2000) 558.
- [8] V.A. Zakharov, I.I. Zakharov, Macromol. Theory Simul. 11 (2002) 352.
- [9] J.C.W. Chien, A. Razavi, J. Polym. Sci. A 26 (1998) 2369.
- [10] L.A. Nekhaeva, G.N. Bondarenko, S.V. Rykov, A.I. Nekhaev, B.A. Krentsel, V.P. Mar'in, L.I. Vyshinskaya, L.M. Khrapova, A.V. Polonskii, N.N. Korneev, J. Organomet. Chem. 406 (1991) 139.
- [11] C. Janiak, K.C.H. Lange, U. Versteeg, D. Lentz, P.H.M. Budzelaar, Chem. Ber. 129 (1996) 1517.
- [12] R. Kleinschmidt, Y. van der Leek, M. Reffke, G. Fink, J. Mol. Catal. A: Chem. 148 (1999) 29.
- [13] I. Tritto, D. Zucchi, M. Destro, M.C. Sacchi, T. Dall'Occo, M. Galimberti, J. Mol. Catal. A: Chem. 160 (2000) 107.
- [14] N.E. Grimmer, N.J. Coville, C.B. de Koning, J. Mol. Catal. A: Chem. 188 (2002) 105.
- [15] M. Bochmann, S.J. Lancaster, Angew. Chem. Int. Ed. Engl. 33 (1994) 1634.
- [16] J. Zhou, S.L. Lancaster, D.A. Walker, S. Beck, M. Thornton-Pett, M. Bochmann, J. Am. Chem. Soc. 123 (2001) 223.
- [17] D.E. Babushkin, H.H. Brintzinger, J. Am. Chem. Soc. 124 (2002) 12869.